Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Alvarez Vargas, Nelida Alicia"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Detección de enfermedades en el cultivo de papa mediante el uso de Machine Learning en Abancay, 2022
    (Universidad Nacional Micaela Bastidas de Apurímac, 2025-06-05) Alvarez Vargas, Nelida Alicia; Ibarra Cabrera, Manuel Jesús
    El Perú es un país con una gran diversidad de tipos de papa y es, uno de los principales cultivos agrícolas que sustenta la alimentación de las personas, enfrenta pérdidas en la producción de este cultivo clave debido a enfermedades como el tizón tardío y el pie negro entre otras; lo cual genera una gran pérdida en su producción y, conlleva a un déficit económico para el agricultor. La presente investigación se desarrolló con el objetivo de lograr la detección temprana de enfermedades de pudrición blanda y tizón tardío en el cultivo de la papa, a través del uso de técnicas de Machine Learning y para determinar la eficiencia de la clasificación se utilizaron los modelos de Faster R- CNN y YOLO V4. El procedimiento para esta investigación consistió en recolectar un total de 1011 imágenes de hojas de papa, tanto sanas como enfermas, en la localidad de Abancay, Apurímac. Estas imágenes se dividieron aleatoriamente para realizar el entrenamiento, la validación y las pruebas. Luego, se llevó a cabo el etiquetado de las imágenes utilizando la herramienta LabelImg y Roboflow. Posteriormente, se empleó la herramienta Google Colab con lenguaje de programación Python para realizar el entrenamiento, con cada uno de los modelos, seguido de las validaciones y, finalmente, realizar las pruebas. Los resultados obtenidos revelan que, Faster R-CNN demostró un rendimiento sólido en la detección de Pie Negro, alcanzando una precision, recall, F-value y accuracy del 100%. En el caso de la detección de Rancha, aunque los valores fueron ligeramente más bajos, aún mostró una precision del 98%, un recall del 79%, un F-value del 87% y un accuracy del 78%. Por otro lado, YOLO V4 también sobresalió en la detección de Pie Negro, logrando una precision, recall, F-value y accuracy del 100%. En cuanto a la detección de Rancha, los valores experimentaron una variación mínima, obteniendo un precision del 97%, un recall del 90%, un F-value del 93% y un accuracy del 87%. Finalmente podemos concluir que YOLO V4 destaca en la detección de ambas enfermedades en hojas de papa en la región de Abancay, Apurímac.
ALICIADHIRA SPACEGoogle ScholarLA ReferenciaOpen AccessOpenDOARROARMAP
UNAMBA Logo

Bienvenidos al Repositorio Institucional, espacio dedicado a difundir y preservar la producción científica y académica de la Universidad, promoviendo el acceso abierto a sus contenidos para fortalecer la visibilidad e impacto del conocimiento generado por nuestra comunidad universitaria.

Ubicanos

Av. Garcilazo de la Vega S/N Tamburco - Abancay - Apurímac
Email: repositorio@unamba.edu.pe
Horario: Lunes - Viernes 7:30 a 15:30 h

Accesos rápidos

Reglamento de repositorioFormatos y otrosPolíticasManualesHoja de autorización

Software DSpace copyright © 2002-2025 LYRASIS
Configuración de cookies|Política de privacidad|Acuerdo de usuario final|Enviar Sugerencias